The structure is stabilized by a network of hydrogen bonds involving the amino and carboxylate groups of both molecules and the water molecules. Fig. 2 gives a stereoscopic view of the packing of the molecules in the unit cell. The amino groups each take part in three hydrogen bonds, to two water O atoms and $\mathrm{O}(1)$ of the carboxyl groups $[\mathrm{N}(1) A \cdots \mathrm{O} W 3,2 \cdot 944$ (1), $\mathrm{H} 1 \mathrm{~N}(1) \cdots$ OW3, $2.01 \AA ; \mathrm{N}(1)-\mathrm{H} 1 \mathrm{~N}(1) \cdots \mathrm{O} 3,166^{\circ} ; \mathrm{N}(1) A \cdots$ $\mathrm{O} W 2,2.764(1), \mathrm{H} 2 \mathrm{~N}(1) \cdots \mathrm{OW} 2,1.94 \AA$; $\mathrm{N}(1)-$ H2N(1)‥OW2, $145^{\circ} ; ~ N(1) A \cdots \mathrm{O}(1) A, 2.751$ (1), $\mathrm{H} 3 \mathrm{~N}(1) \cdots \mathrm{O}(1) A, \quad 1.74 \AA$; $\mathrm{N}(1)-\mathrm{H} 3 \mathrm{~N}(1) \cdots \mathrm{O}(1) A$, 178°; $\mathrm{N}(1) B \cdots \mathrm{O}=2.775$ (1), H1N(1)…OW1, $1.81 \AA$; $\mathrm{N}(1)-\mathrm{H} 1 \mathrm{~N}(1) \cdots \mathrm{O} 1,172^{\circ} ; \mathrm{N}(1) B \cdots \mathrm{O} 3$, $2.860(1), \mathrm{H} 2 \mathrm{~N}(1) \cdots \mathrm{OW} 3,2.05 \AA ; \mathrm{N}(1)-\mathrm{H} 2 \mathrm{~N}(1) \cdots$ $\mathrm{O} W 3,151^{\circ} ; \mathrm{N}(1) B \cdots \mathrm{O}(1) B, 2.776(1), \mathrm{H} 3 \mathrm{~N}(1) \cdots$ $\left.\mathrm{O}(1) B, 1.78 \AA ; \mathrm{N}(1)-\mathrm{H} 3 \mathrm{~N}(1) \cdots \mathrm{O}(1) B, 177^{\circ}\right]$. Two water molecules, $\mathrm{O} W 1$ and $\mathrm{O} W 2$, donate two hydrogen bonds to the carbonyl oxygens and receive one each from the amino N atoms $[\mathrm{O} W 1 \cdots \mathrm{O}(1) A, 2.753$ (1), $\mathrm{H} 1 \mathrm{O} W 1 \cdots \mathrm{O}(1) A, \quad 1 \cdot 88 \AA, \mathrm{O} W 1-\mathrm{H} 1 \mathrm{O} W 1 \cdots \mathrm{O}(1) A$, 172°; $\mathrm{O} W 1 \cdots \mathrm{O}(2) B, \quad 2.853(1), \mathrm{H} 2 \mathrm{O} W 1 \cdots \mathrm{O}(2) B$, $2.01 \AA, \mathrm{O} W 1-\mathrm{H} 2 \mathrm{O} W 1 \cdots \mathrm{O}(2) B, 162^{\circ} ; \mathrm{O} W 2 \cdots \mathrm{O}(2) A$, 2.721 (1), $\mathrm{H} 1 \mathrm{O} W 2 \cdots \mathrm{O}(2) A, \quad 1.89 \AA, \quad \mathrm{O} W 2-$ $\mathrm{H} 1 \mathrm{O} W 2 \cdots \mathrm{O}(2) A, \quad 175^{\circ} ; \mathrm{O} W 2 \cdots \mathrm{O}(2) B, \quad 2.768$ (1), $\mathrm{H} 2 \mathrm{O} W 2 \cdots \mathrm{O}(2) B, \quad 1.90 \AA, \mathrm{O} W 2-\mathrm{H} 2 \mathrm{O} W 2 \cdots \mathrm{O}(2) B$, 152°]. The third water oxygen, $\mathrm{O} W 3$, by contrast receives two hydrogen bonds from each of the amino N atoms of molecules A and B and donates two hydrogen bonds to the carbonyl oxygens $\mathrm{O}(2)$ of A and B

IOW3 $\cdots \mathrm{O}(2) B, 2.833(1), \mathrm{H} 1 \mathrm{OW} 3 \cdots \mathrm{O}(2) B, 1.96 \AA$, $\mathrm{O} W 3-\mathrm{H} 1 \mathrm{O} W 3 \cdots \mathrm{O}(2) B, \quad 177^{\circ} ; \quad \mathrm{O} 33 \cdots \mathrm{O}(2) A$, 2.724 (1), $\quad \mathrm{H} 2 \mathrm{O} W 3 \cdots \mathrm{O}(2) A, \quad 1.93 \AA, \quad \mathrm{OW} 3-$ $\mathrm{H} 2 \mathrm{O} W 3 \cdots \mathrm{O}(2) A, \quad 145^{\circ}$. The hydrogen-bonding environment of $\mathrm{O} W 1$ is trigonal non-planar; $\mathrm{O} W 2$ is trigonal planar and OW 3 is tetrahedral.

We thank Dr R. Parthasarathy for the use of crystallographic facilities and helpful discussions, and Mr Louis Leone, a summer student, for participating in this project. This work is supported by the New York State Department of Health.

References

Chacko, K. K., Swaminathan, S. \& Bhattacharjee, S. K. (1981). Biomolecular Structure, Conformation, Function and Evolution, Vol. 1, edited by R. Srinivasan, pp. 621-631. Oxford: Pergamon Press.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Gaudestad, O., Mostad, A. \& Romming, C. (1976). Acta Chem. Scand. Ser. B, 30, 501-504.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Neuman, A., Gillier, H., Avenel, D. \& Perret, G. (1984). Acta Cryst. C40, 2124-2126.
Satyshur, K. A. \& Rao, S. T. (1983). Acta Cryst. C39, 1672-1673.

Acta Cryst. (1988). C44, 850-853

Structure of \boldsymbol{N}-Pivaloyl- \boldsymbol{N}^{\prime}-methyl-L-prolinamide*

By G. Valle, M. Crisma and C. Toniolo \dagger
Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

(Received 1 September 1987; accepted 16 December 1987)

Abstract

C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\) (Piv-L-Pro-NHMe; Piv, pivaloyl and NHMe, methylamino): $M_{r}=212 \cdot 30$, orthorhombic, $P 2_{12} 2_{1} 2_{1}, \quad a=23.366$ (2), $b=7.972$ (1), c $=6.445(1) \AA, \quad V=1200 \cdot 5(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.174 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA, \mu=0.76 \mathrm{~cm}^{-1}$, $F(000)=464, T=295 \mathrm{~K}$. The final R value for 897 observed $[I \geq 3 \sigma(I)]$ reflections is 0.055 . The conformation of the two amide bonds is trans and the L -Pro residue shows a φ, ψ set of torsion angles falling in

^[* Linear Oligopeptides. 187. Part 186: Bardi, Piazzesi, Toniolo, Jensen \& Senning (1988). \dagger Author to whom correspondence should be addressed.]

0108-2701/88/050850-04\$03.00
region F of the energy map where poly(L-Pro) II and collagen structures are found. The dihedral angle δ between the two amide groups is $79.2(10)^{\circ}$.

Introduction. The $3 \rightarrow 1$ intramolecularly H -bonded peptide conformation, also termed C_{7} form or γ-turn, is a ring structure that is folded by an H bond between the main-chain peptide $\mathrm{N}-\mathrm{H}$ of residue 3 and the $\mathrm{C}=\mathrm{O}$ of residue 1 (Némethy \& Printz, 1972). The occurrence of this type of folding has been unequivocally demonstrated by X-ray diffraction in crystals of two cyclic peptides and a very limited number of proteins (thermolysin, ferricytochrome c) (Toniolo, 1980). So
(c) 1988 International Union of Crystallography
far, no experimental evidence has been found, however, for the existence of the γ-turn conformation in crystalline linear peptides.

We considered the terminally blocked amino acid N-pivaloyl- N^{\prime}-methyl-L-prolinamide (Piv-L-Pro-NHMe) to be a promising candidate for adopting the γ-turn conformation in the crystal state on the basis of the following properties: (i) In CDCl_{3} solution at low concentration, where self-association is absent, in addition to the IR absorption band at $3457 \mathrm{~cm}^{-1}$ (stretching mode of free $\mathrm{N}-\mathrm{H}$ groups) a relatively intense band at $3330 \mathrm{~cm}^{-1}$ (H -bonded $\mathrm{N}-\mathrm{H}$ groups) is seen. (ii) Published ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies are in favour of the occurrence of the γ-turn conformation to a substantial extent in the equilibrium mixtures of this compound in a variety of solvents (Nagaraj, Venkatachalapathi \& Balaram, 1980; Giessner-Prettre, Cung \& Marraud, 1987). (iii) The solid-state IR absorption spectrum shows an intense band at $1606 \mathrm{~cm}^{-1}$, due to the Piv-Pro amide carbonyl stretching mode, shifted markedly to lower wavenumbers compared with the free amide carbonyl of Piv-L-Pro-OMe (OMe, methoxy) which is seen at $1626 \mathrm{~cm}^{-1}$ (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1982). In addition, the methylamide carbonyl is free ($1686 \mathrm{~cm}^{-1}$). The stretching band of H -bonded $\mathrm{N}-\mathrm{H}$ groups is found at $3323 \mathrm{~cm}^{-1}$ under these experimental conditions.

As part of our continuing study on the various types of intramolecularly H -bonded conformations formed by short peptides (Toniolo, 1980), the present paper is concerned with the molecular and crystal structure of Piv-l-Pro-NHMe.

Experimental. Colourless crystals of Piv-L-Pro-NHMe (Nagaraj, Venkatachalapathi \& Balaram, 1980) were obtained from an ethyl acetate/petroleum ether solution by slow evaporation. Crystal $0.12 \times 0.12 \times 0.8 \mathrm{~mm}$. Intensities were collected on a Philips PW 1100 four-circle diffractometer operating in the $\theta / 2 \theta$ scan mode (with scan width 1.2° and scan speed $0.03^{\circ} \mathrm{s}^{-1}$) with graphite-monochromatized Mo $K \alpha$ radiation. 1262 reflections up to $2 \theta=50^{\circ}$ were measured, of which 897 had intensities greater than $3 \sigma(I) . h, k, l$ range $0-26$, $0-9,0-7$. During data collection three standard reflections were measured every 180 min to check stability of the crystal and the electronics. Intensities were corrected for Lorentz and polarization factors; no absorption correction was applied.

The structure was solved by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and refined on F by block-diagonal least squares with anisotropic thermal parameters for all non- H atoms ($w=1$). The H atoms were partially localized on the ΔF map and all refined isotropically. All calculations were performed on the IBM 370/158 computer of the University of Padova,

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for the non -H atoms of Piv-L-Pro-NHMe (with e.s.d.'s in parentheses)

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O(1)	0.6838 (2)	$0 \cdot 1668$ (5)	0.8569 (7)	0.0527
$\mathrm{O}(2)$	0.6575 (2)	-0.2322 (5)	0.8622 (7)	0.0625
$\mathrm{N}(1)$	0.6335 (2)	0.0429 (6)	$1 \cdot 1084$ (7)	0.0439
N(2)	0.7473 (2)	-0.2557 (6)	0.9897 (8)	0.0519
C(1)	0.5333 (2)	$0 \cdot 1633$ (9)	0.8278 (12)	0.0726
C(2)	0.5732 (3)	0.3888 (9)	1.0697 (12)	0.0760
C(3)	0.6047 (3)	0.3712 (9)	0.6964 (11)	0.0703
C(4)	0.5865 (2)	0.2667 (8)	0.8859 (11)	0.0516
C(5)	$0 \cdot 6380$ (2)	0.1533 (7)	0.9501 (9)	0.0412
C(6)	0.5835 (3)	-0.0096 (9)	1.2325 (11)	0.0662
C(7)	$0 \cdot 6065$ (5)	-0.1376 (22)	1.3757 (28)	0.1125
C(8)	0.6674 (3)	-0.1480 (11)	1.3625 (12)	0.0696
C(9)	$0 \cdot 6841$ (3)	-0.0591 (8)	1.1581 (10)	0.0457
C(10)	0.6947 (3)	-0.1887 (8)	0.9863 (10)	0.0457
C(11)	0.7643 (3)	-0.3881 (9)	0.8450 (12)	0.0609

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for
Piv-L-Pro-NHMe (with e.s.d.'s in parentheses)

$\mathrm{O}(1)-\mathrm{C}(5)$	$1.232(7)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.564(10)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.231(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.538(10)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.352(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.561(8)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.476(8)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.477(19)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.470(8)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.428(14)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.340(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.546(10)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.463(9)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.535(9)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$1.538(8)$		
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	$130.9(5)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.3(5)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(9)$	$117.5(5)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$121.2(5)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(9)$	$111.2(5)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$104.3(7)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11)$	$121.7(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.4(12)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	$110.9(5)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$106.0(9)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.7(5)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$103.7(5)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.2(5)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$110.2(5)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.6(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$110.3(6)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$108.2(5)$	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{N}(2)$	$123.1(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$108.1(5)$	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$123.0(6)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}(1)$	$119.5(5)$	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$113.9(6)$

using SHELX76 (Sheldrick, 1976). The final R value was $0.055 . S=0.69 .(\Delta / \sigma)_{\text {max }}$ in final refinement cycle for non-H atoms $0 \cdot 73$. Max. and min. heights in final ΔF synthesis 0.25 and $-0.29 \mathrm{e}^{-3}$. Atomic scattering factors from SHELX. Table 1 gives the final atomic coordinates and isotropic thermal parameters for the non-H atoms.*

Discussion. Bond lengths and bond angles of Piv-L-Pro-NHMe (Table 2) compare well with those found in other tertiary pivalamides (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1982; Aubry, Cung \& Marraud, 1985), proline derivatives (Balasubramanian, Lakshminarayanan, Sabesan, Tegoni, Venkatesan \& Ramachandran, 1971; Ashida \&

[^1]Kakudo, 1974; De Tar \& Luthra, 1977; Nair \& Vijayan, 1981; Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1983; Ashida, Tsunogae, Tanaka \& Yamane, 1987), and secondary noncyclic amides (Chakrabarti \& Dunitz, 1982). In particular: (i) Bond angles of the Piv-Pro amide bond are perturbed by steric hindrance between the bulky tert-butyl group and the $C(6)$ atom, resulting in an extremely large $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$ angle, $130 \cdot 9(5)^{\circ}$, and in a small $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(9)$ angle, 117.5 (5) ${ }^{\circ}$. (ii) Bond lengths involving the $C(7)$ atom are shorter than usual, 1.477 (19) and $1.428(14) \AA$. The high anisotropy of the $C(7)$ thermal motion (Fig. 1) is due to static structural disorder.

The dihedral angle δ between the normals to the average planes of the two amide groups of Piv-L-Pro-NHMe is $79.2(10)^{\circ}$ in agreement with the observed preference for this angle in N-acyl, N^{\prime}-methyl α-amino acid amides (Chen \& Parthasarathy, 1978). The dihedral angle between the normals to the average planes of the pivaloyl group and the pyrrolidine ring is $5.3(12)^{\circ}$.

The amide torsion angles ω (IUPAC-IUB Commission on Biochemical Nomenclature, 1970) are trans: 179.9 (5) [C(9)-N(1)-C(5)-C(4), pivalamide] and $176.6(6)^{\circ}[\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$, methylamide]. In the Piv-Pro compounds studied so far, the pivalamide group is frozen in the trans conformation (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1982) since in this arrangement the central $C(4)$ atom of the bulky tert-butyl moiety of the pivaloyl group and the disubstituted C^{α} atom of the linked amino acid residue are also trans to each other.

The tert-butyl moiety of the pivaloylamino group of Piv-L-Pro-NHMe adopts the usual A conformation with respect to the amide group (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1982). In this conformation the $C(3)$ methyl group is eclipsed with respect to the $C(5)=O(1)$ bond $[C(3)-C(4)-$ $\left.\mathrm{C}(5)-\mathrm{N}(1)=\theta^{1,3}=-177.5(5)^{\circ}\right]$ and the other two

Fig. 1. Molecular structure of Piv-L-Pro-NHMe with the numbering of atoms.
methyl groups, $C(1)$ and $C(2)$, are skew [C(1)-$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)=\theta^{1,1}=-57.7$ (7); $\mathrm{C}(2)-\mathrm{C}(4)-$ $\left.C(5)-N(1)=\theta^{1,2}=65.0(7)^{\circ}\right]$. Consequently, the plane of the amide moiety nearly bisects the $C(1)-$ $C(4)-C(2)$ angle. In this conformation the $C(6)$ atom would have experienced severe steric interactions with both $C(1)$ and $C(2)$ methyls, if not relieved by the aforementioned marked opening of the $\mathrm{C}(5)-\mathrm{N}(1)-$ $\mathrm{C}(6)$ bond angle.

The set of $\varphi, \psi[\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10), \mathrm{N}(1)-$ $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)]$ angles for the L -Pro residue, -70.5 (7) and $163 \cdot 2(5)^{\circ}$, falls in region F (Zimmerman, Pottle, Némethy \& Scheraga, 1977) of the conformational energy map, where poly(l-Pro) ${ }_{n}$ II and collagen structures are found, at variance with the corresponding sets of values shown by Ac-L-ProNHMe (Ac, acetyl) (Matsuzaki \& Iitaka, 1971) and Ac-L-Pro- NH_{2} (Drück, Littke \& Main, 1979), the only two N-acylated prolinamides whose structures have been solved so far (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1983), which fall in region A where the right-handed $\alpha / 3_{10}$-helices are found $\left(-76.3,-15.8\right.$, and $-80.1,-14.2^{\circ}$, respectively).

The pyrrolidine ring of the L -Pro residue has a conformation described as C_{s} (envelope) symmetry with C^{β}-exo or conformation B (Balasubramanian, Lakshminarayanan, Sabesan, Tegoni, Venkatesan \& Ramachandran, 1971; Ashida \& Kakudo, 1974; De Tar \& Luthra, 1977; Nair \& Vijayan, 1981; Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo \& Bonora, 1983), the ring torsion angles being $\mathrm{C}(6)-\mathrm{N}(1)-$ $\mathrm{C}(9)-\mathrm{C}(8)=\theta=-14.6(7), \quad \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)$ $=\chi_{1}=18.5(9), \quad \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)=\chi_{2}=$ $-16.5(13), \quad \mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)=\chi_{3}=7.5(13)$ and $\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)=\chi_{4}=5.2(9)^{\circ}$. Ring conformation B is also adopted by Ac-L-Pro-NHMe (Matsuzaki \& Iitaka, 1971) and Ac-L-Pro-NH2 (Drück, Littke \& Main, 1979).

There are no intramolecular hydrogen bonds in Piv-L-Pro-NHMe. Rather, chains of molecules are formed via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (pivaloylamide) hydrogen bonds (Fig. 2). The $\mathrm{N}(2) \cdots \mathrm{O}(1)$ $\left(\frac{3}{2}-x,-y, \frac{1}{2}+z\right)$ distance is $2.949(10) \AA$, falling within the most probable range for the length of an

Fig. 2. Mode of packing of the Piv-L-Pro-NHMe molecules. The intermolecular hydrogen bond is indicated as a dashed line.
(amide) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (amide) hydrogen bond (Ramakrishnan \& Prasad, 1971; Taylor, Kennard \& Versichel, 1984).

To summarize, despite the solution behaviour and solid-state IR absorption spectra, the Piv-L-Pro-NHMe molecules do not fold up in the γ-turn conformation in the crystalline state. Other crystalline amino acid derivatives and linear peptides, promising candidates for adopting such an intramolecularly hydrogen-bonded structure, are currently under scrutiny in our laboratory.

References

Ashida, T. \& Kakudo, M. (1974). Bull. Chem. Soc. Jpn, 47, 1129-1133.
Ashida, T., Tsunogae, Y., Tanaka, I. \& Yamane, T. (1987). Acta Cryst. B43, 212-218.
Aubry, A., Cung, M. T. \& Marraud, M. (1985). J. Am. Chem. Soc. 107, 7640-7647.
Balasubramanian, R., Lakshminarayanan, A. V., Sabesan, M. N., Tegoni, G., Venkatesan, K. \& Ramachandran, G. N. (1971). Int. J. Protein Res. 3, 25-33.

Bardi, R., Piazzesi, A. M., Toniolo, C., Jensen, O. E. \& Senning, A. (1988). Biopolymers. In the press.
Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Pedone, C., Toniolo, C. \& Bonora, G. M. (1982). Int. J. Pept. Protein Res. 20, 312-319.
Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Pedone, C., Toniolo, C. \& Bonora, G. M. (1983). Biopolymers, 22, 305-317.

Chakrabarti, P. \& Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1555-1562.
Chen, C. S. \& Parthasarathy, R. (1978). Int. J. Pept. Protein Res. 11, 9-18.
De Tar, D. L. F. \& Luthra, N. P. (1977). J. Am. Chem. Soc. 99, 1232-1244.
Drück, U., Littie, W. \& Main, P. (1979). Acta Cryst. B35, 253-255.
Giessner-Prettre, C., Cung, M. T. \& Marraud, M. (1987). Eur. J. Biochem. 163, 79-87.
IUPAC-IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Matsuzaki, T. \& Ittaka, Y. (1971). Acta Cryst. B27, 507-516.
Nagaraj, R., Venkatachalapath, Y. V. \& Balaram, P. (1980). Int. J. Pept. Protein Res. 16, 291-298.
Nair, C. M. K. \& Vljayan, M. (1981). J. Indian Inst. Sci. Sect. C, 63, 81-103.
Némethy, G. \& Printz, M. P. (1972). Macromolecules, 5, 755-758.
Ramakrishnan, C. \& Prasad, N. (1971). Int. J. Protein Res. 3, 209-231.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Taylor, R., Kennard, O. \& Versichel, W. (1984). Acta Cryst. B40, 280-288.
Toniolo, C. (1980). CRC Crit. Rev. Biochem. 9, 1-44.
Zimmerman, S. S., Pottle, M. S., Némethy, G. \& Scheraga, H. A. (1977). Macromolecules, 10, 1-9.

Acta Cryst. (1988). C44, 853-856

Structure and Conformation of a Nucleoside Analog 5-Nitro-1- β-D-arabinofuranosyluracil

By Goutam Biswas and Asok Banerjee*
Department of Biophysics, Bose Institute, Calcutta - 700 054, India
David Shugar
Department of Biophysics, University of Warsaw, Warszawa, Poland
and W. L. Duax
Medical Foundation of Buffalo, NY, USA

(Received 24 March 1987; accepted 1 October 1987)

Abstract. $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{8}, \quad M_{r}=271$, orthorhombic, $P 22_{1} 2_{1}, \quad a=9.241$ (2),$\quad b=20.518$ (4),$\quad c=$ $6 \cdot 187$ (1) $\AA, V=1173 \cdot 1 \AA^{3}, Z=4, D_{x}=1.29 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.7107 \AA, \mu=1.57 \mathrm{~cm}^{-1}, F(000)=600$, $T=288 \mathrm{~K}$, final $R=0.051$ for 1078 observed reflections. Conformational features of the nucleoside

[^2]0108-2701/88/050853-04\$03.00
include a glycosidic bond conformation in the anti range, a ribose moiety in the $\mathrm{C}\left(2^{\prime}\right)$-endo $\left({ }^{2} E\right)$ form and the $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ bond gauche to both $\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$ and $C\left(4^{\prime}\right)-C\left(3^{\prime}\right)$.

Introduction. Pyrimidine nucleosides and nucleotides substituted at the 5 position by various functional groups are very interesting for their antiviral, antitumor © 1988 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44622 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

